销售热线

15002170619
主营产品:网络电力仪表,中压保护装置,电量传感器,隔离电源柜,光伏汇流箱,精密配电监控装置,智能母线监控装置,电瓶车充电桩,汽车充电桩,低压有源滤波装置,变电所运维云平台,安全用电管理云平台,环保用电监管云平台,预付费管理(系统)云平台,智能变配电监控系统,电能质量治理系统,建筑能耗管理系统,工业能源管控平台,漏电火灾监控系统,消防电源监控系统,防火门监控,应急照明和疏散指示系统,充电桩收费管理系统,数据中心动环监控系统,智能照明控制系统,IT隔离电源等系统及相关产品
  • 技术文章ARTICLE

    您当前的位置:首页 > 技术文章 > 智慧配电能源管理平台在医院节能的应用

    智慧配电能源管理平台在医院节能的应用

    发布时间: 2023-10-16  点击次数: 255次

    摘要:为减少医疗建筑能耗,优化医院能源管理,基于智慧医院的要求,通过分析广州市番禺区某医院的能耗特性,对医院空调系统、空调与窗户联动控制系统、屋顶光伏系统等智能楼宇分系统进行节能建模分析,建议采取医院信息化建设、可再生能源改造、精细化管理等措施,预计实施后每年可以节约用电256万kW·h,相当于节省315t标准煤,减少CO2排放量873t,对于城市既有医疗建筑的节能改进和能源智慧管理具有较强的示范作用。

    关键词:智慧医院;综合智能楼宇;精细化管理;节能减排;光伏发电

    0引言

    随着社会经济的快速发展,我国的能源消费呈现增长态势。据统计2018年全国建筑运行能耗达到10亿t标准煤,占全国能源消费总量比重为21.7%,碳排放21.1亿t(以CO2计,下同),占全国能源碳排放的比重21.9%[1]。大型公共建筑是建筑能源消耗的高密度领域,医院建筑的能耗是一般公共建筑的3~4倍[2]。2020年度广东省公立医院单位建筑面积能耗17.17kg标准煤/m2,人均综合能耗达280.82kg标准煤,远高于场馆、学校等公共建筑,是广东省中小学建筑能耗的5倍。随着国家“双碳"战略的推动,医院建筑运行节能工作迫在眉睫[3]。

    当前医院采用的节能措施主要围绕设备改造和更新[4]。林爱麟[5]摸查了长沙市医院建筑能耗,提出采用提升冷热源运行效率、合理配置空调及通风系统等措施来降低医院能耗;姜海勇等[6]以深圳市孙≥仙心血管医院为例,通过空调主机系统等节能改造达到降耗效果。沈洪等[7]分析了中山大学附属肿瘤医院燃油蒸汽锅炉技改,同时配合智能群控系统。以上研究主要考虑设备因素,较少考虑人的用能行为。方婷婷[8]选取广州地区6个典型医院建筑,提出落实能源管理制度等节能建议,包括运用制度对人员行为进行约束,但因为人的行为较难预测,实施效果难以保证。

    智慧医院的建设立足于信息化、互联网、物联网,通过对医院资源的合理配置达到智慧管理的效果[9-10]。其中,运用物理信息技术进行精细化管理的理念为医院能源系统管理提供了新的方向。本文以广州市番禺区某医院为研究对象,分析医院能耗特性和主要耗能因素,提出基于智慧能源管理的节能措施,并对节能措施的影响因素进行敏感性分析。

    1医院能耗特性分析

    医院建筑的能耗总量因医院类型、等级、地理位置等因素而不同,但具体的医院在功能和能源结构确定后,通常有着较稳定的能耗[11]。本文以华南地区某综合医院为例分析医院的能源消耗情况。

    广州市番禺区某医院是一所大型综合公立医院,占地14.7万m2,有建筑楼8栋,总建筑面积23.5万m2,实际开放床位1479张,2020年总诊疗达176.8万人次。该医院能源消耗的类主要为电能消耗和燃料消耗。2020年度用电量达2489万kW·h,天然气消费量3068m3,汽油消费量59656L,柴油消费量240L,全院年能源消费量折算标煤3152t标准煤,电能消费占医院总能消耗的97.07%。医院电能消费可分为医疗设备和后勤服务设备,其中后勤服务设备包括暖通空调、照明系统、电梯、安防、办公用电等。该医院地处南亚热带,气候分区属于夏热冬暖,冬季无供暖需求,空调系统主要用于夏季供冷。

    医院空调能耗全年平均占比45.83%,6、7、8月份占比达51%以上。医院空调能耗逐月分布情况见表1。

    表1医院空调能耗逐月分布情况

    月份

    空调能耗/(kW·h)

    空调能耗占比/%

    1月

    400691

    33.83

    2月

    395510

    36.93

    3月

    467287

    36.90

    4月

    601819

    40.07

    5月

    1388182

    49.12

    6月

    1564625

    51.21

    7月

    1730203

    51.84

    8月

    1702148

    51.53

    9月

    1274287

    48.65

    10月

    807388

    43.23

    11月

    575030

    38.11

    12月

    502732

    37.07

    总计

    11409902

    根据使用目的,医院空调可分为舒适性空调和工艺性空调[12]。舒适性空调主要为室内人员提供舒适环境,包括病房、办公室等公共活动区域。工艺性空调应用在对空气质量有严格要求的空间,包括手术室、麻醉科等区域。医院空调系统耗能量前五的区域见图1,分别是病房(含办公室区域)、手术室和麻醉科、门诊、消毒供应中心、急诊。其中病房(含办公室区域)占空调系统用能的35.8%,大大高于手术室等区域。

    bd6646780ed23a6f0950e9c7ab5e3671_6fadf77ea1d54a0c9998eeaa229719b8.jpeg

    图1医院空调系统年度耗能区域

    此外,医院的能源均为外部购置,成本居高不下。医院的能源供应结构较为单一,电能100%由市电供应,不利于医院能源系统安全。根据绿色医院建筑的建设理念,需要符合低碳环保的要求。

    2医院节能措施建模

    由医院能耗特性分析可知,医院能源系统节能应从减少能源消耗和改善能源供应结构着手。以电能为主的能源消费中,空调能耗占能耗的大部分。其中,医院工艺性空调需要为诊疗服务提供支撑,不适宜进行大幅度改造。医院舒适性空调中,病房(含办公室区域)应作为重点节能对象。在日常实践中发现,病房和办公室区域,人为不节能行为会造成空调非必要的能耗。例如,在病房区域,部分病人节能意识差,将空调温度调至很低;部分病人担心室内空气流通状况不佳,在空调运行期间将窗户打开通风;办公区域,办公室人员时常有下班忘记关空调等现象。医院人员构成复杂,节能理念难以统一,靠制度约束人的行为不可控因素过多。因此,考虑基于智慧医院管理的智能楼宇建设,构建空调监控系统、空调与窗户联动控制系统模型,同时挖掘医院可再生能源资源的潜力,构建屋顶光伏系统模型。

    2.1空调智慧监控系统

    结合国务院执行公共建筑空调温度控制标准的通知和夏季病房内病人舒适性要求,空调系统设定的温度取27℃较为适宜[13],而现实中,用户多将病房空调设定温度远低于27℃。因此,在考虑用户偏好的前提下,通过空调智慧监控系统对病房内空调温度范围进行调控,空调智慧监控系统设定如下:

    (1)实时采集室内、室外气温;

    (2)规定空调设定温度*低值;

    (3)病房内用户输入自己的偏好温度;

    (4)当外界气温高于(+3)℃时,病房空调开启,且温度设定为;

    (5)当用户输入的偏好温度低于时,病房空调自动设定为。

    模型假设用户用能行为与监控系统逻辑一致,倾向于在外界气温高于用户的偏好温度3℃时开启空调。南方地区除夏季持续高温外,过渡季节气温较多处于25~30℃间,因此该系统能有效监控病房内空调开启次数和设定温度。根据Meteonorm软件导出的广州市2020年全年8785h气象数据,广州市全年有1444h≥30℃,3122h≥27℃,4185h≥25℃。若用户偏好温度为22℃,则与设定温度*低值27℃相比,全年空调开启时长相差巨大。用户偏好温度较低,令室内外温差加大,从而增加空调运行能耗。计算能耗改变比例时,可以假设外界环境除气温以外的因素不变,将空调系统能耗简化为室内外空气焓差。在改善空调开启时长和空气焓差共同作用下,节约的能耗计算如下:

    74411c3e6aef226c5e75ba37d1041918_5a0aee33e22245e9bf3afea0c3979aea.png

    式中:t为每年因空调温度控制而节约的空调能耗比例,%;0为病房空调能耗占医院总体空调能耗比例,%;为未实施节能措施前每年病房空调系统能耗,kW·h;rt为实施节能措施后每年病房空调系统能耗,kW·h;为每年室外气温≥(+3)℃的时间,h;为每年室外气温≥(+3)℃的时间,h;w为室外空气逐时比焓,kJ/kg;n为室内空气逐时比焓,kJ/kg;为在(1,2)温度区间空调温度设定的取值概率。

    2.2空调与窗户联动控制系统

    当开启空调房间的窗户打开时,在热压和风压的作用下,室内冷空气≥出,室外热空气进入,使房间的冷负荷增加。结合医院“智慧管理"的精细化管理,加强医院设备在线管理,可建设空调系统与窗户联动控制系统,监控窗户启闭状态,当空调运行和窗户开启2个条件同时满足时,通过能源管理系统关闭房间空调,由此调节病房内空调用能行为。为简化计算,忽略冷热空气焓差,假设从窗户进入的是与室内新风温度相同的冷空气,通过实施该系统前后的系统风量变化计算节约的空调能耗比例。新风量能耗只占空调能耗的一部分,但在外界条件不变的情况下,新风量的有限改变不会大幅影响新风量负荷占空调冷负荷的比例。且真实的热空气进入房间后会额外增加空调能耗,因此,该简化不影响措施的能耗节约比例计算。节约的能耗计算如下:

    10cace280afadb0e46ee0fbcda0249c5_376069a275d540fabc52e0067597f065.png

    45b36ee502c9d72eca6eb5132684699a_0591e70d05684f6798b956ad1cbeaba9.png

    式中:w为每年因控制开窗行为而节约的空调能耗比例,%;new为新风量部分占空调冷负荷的比例,%;rw为实施空调与窗户联动控制系统后每年病房空调系统总新风量,m3;o为通过开窗户流通的空气量,m3/s;为开空调时开窗时长,h;为房间数,个;r为一个房间的新风换气量,m3/s;为开空调时长,s;w为有开窗现象的病房比例,%。

    为便于研究窗户流通的空气量,将一个开窗的房间简化为单侧开口箱体。通过窗户的单侧通风量为热压和风压作用下的流通量。热压是指因室内外温度不同造成室内外空气密度差而产生的压差。风压是指室内外风速作用下产生的压差,假设窗户为单开口自然通风,且为稳态流动。单侧通风量计算公式[14]为:

    9a5df5a8b3e222ab412631eb53406a32_ce220c9abd7c4715aa38a375883c3e67.png

    式中:h为热压作用下的自然通风量,m3/s;d为系数,取0.61;为窗户开启面积,m2;为开口高度,m;驻为室内外空气温度差,K;为室内外空气平均热力学温度,K;w为风压作用下的自然通风量,m3/s;eff为有效开口面积,m2;为开口处的风速,m/s。

    2.3综合发电和楼顶遮阳的屋顶光伏系统

    太阳能光伏板是常见的分布式可再生能源。通过增加发电途径,可以改善能源供应,降低能源成本。通常该技术措施的节能效果是根据光伏发电量估算,而光伏板对于建筑的影响则被忽略。根据对设备设施的智慧管理与规划,设计屋顶太阳能光伏板铺设方案,可以达到发电和楼顶遮阳的双重效果。

    在屋顶,光伏板对太阳辐射进行直接遮挡,相当于增加了热阻,减少到达室内的热流量。光伏板架空通风层中空气对流运动也能带走部分热量,减少到达屋顶的热流量,为简化计算,忽略不计。因遮阳减少的能耗比例计算公式为:

    73e001242d3c12e22ff7409587641b1b_22e9a0f61c5b42c48ec7c7c4dad9dfca.png

    式中:1为采取遮阳措施前单位面积因太阳辐射产生从室外到室内的热流量,W/m2;2为采取遮阳措施后单位面积因太阳辐射产生从室外到室内的热流量,W/m2;o为屋面总热阻,m2·K/W;驻为光伏板附加的热阻,m2·K/W;为屋顶房间数量占全部房间的比例,%。

    通过光伏板发电产生的电量计算公式为:

    a6c7e2497a4653b9c2b95044e24d6281_e8298dfa773c48a4b55dbc7caa89a2e7.png

    式中:pv为光伏板年发电量,kW·h;pv为单位光伏板的额定发电功率,kW/m2;为屋顶可铺设光伏板面积,m2;为光伏板发电效率,%;为年太阳能可利用小时数,h。

    式(10)~式(13),则该项措施每年可节省空调能耗比例为:

    a39d13bc273b49c81f03bceb3aeec2c1_ad75547d212d464e87c07da0f7dc50a1.png

    综合以上节能措施,共节约能耗比例为:

    c6d101f9268cc1fef8c492929d69290b_7f61d43972a843dda0af2d3becf84293.png

    3节能效果与敏感性分析

    广州地区夏季室外空气逐时计算焓值可根据GB50019—2015《工业建筑供暖通风与空气调节设计规范》查得。医院空调系统设定的特定温度取27℃,室内相对湿度取60%。据调查统计,广州地区典型的家庭情景里开机时卧室和客厅开启空调的平均温度为23.35℃[15]。假设用户设定空调温度遵循正态分布,取N(23,22),取值区间为(15℃,35℃)。

    开窗行为是个体不确定行为,在空调房间的开窗行为是一种特定情景的开窗行为[16]。夏热冬冷地区夏季空调开启时窗户开启率有11.1%[17],可认为此行为规律在夏热冬暖地区适用。取开窗时长为开空调时长的一半。单间病房新风量r取0.0556m3/s。窗户开启面积取1.2m伊0.6m,开口的高度取1.2m,有效开口面积eff取窗口面积的一半。室内外空气温度差驻取5K,室内外空气平均温度取302.5K,开口处的风速取2m/s。

    根据夏热冬暖地区居住建筑节能设计标准,屋顶热阻o取0.91m·2K/W,驻取0.3m·2K/W。取14%,COP取3.5。单位光伏板的额定发电功率pv取1kW/m2,屋顶可铺设光伏板面积取2000m2,光伏板发电效率取15.4%,年太阳能可利用小时数取2200h。

    经计算,采取以上节能措施后,全年预计可减少用电256万kW·h,折合节省标煤315t,减少CO2排放量873t,说明节能措施具有良好的经济效℃和环境效℃。

    各项节能措施从设备的智慧管理、人的行为控制和可再生能源利用等方面进行节能,节能效果各有不同。采取节能措施后,医院能耗比例见图2。由图可看出,节能措施共节约医院能耗22.47%。其中,空调温度控制占12%,光伏板综合节能占7%,开窗行为控制占3%,说明空调温度控制起了重要作用。空调温度控制和光伏板综合节能措施可在已建成医院进行局部改造,开窗行为控制需要加强医院运行管理。

    cc0d66309bd331422d15b43ce56b1bfc_3df7b02fd5a24decaef84667260b0e24.jpeg

    图2医院能耗比例

    在对节能措施的效果分析中,为减少不确定因素,作了一定程度的简化和估计。现对部分数据作敏感性分析:

    (1)对用户降低空调设定温度或提前开启空调的行为进行分析时,取空调设定温度为正态分N(23,22)。当标准差和均值分别变化时,室内设定温度概率分布见图3。

    image.png

    当标准差变化为1、2、2.5时,计算得到节约空调能耗比例分别为11.5%、12.1%、12.6%,差别不大。当均值变化为23、24、25时,计算得到节约空调能耗比例分别为12.1%、10.6%、9.1%,均值的变化对结果影响较标准差变化带来的影响较大。根据日常经验,仅有20%的人将空调调至25℃是较为保守的估计,此时节约空调能耗比例仍然较高。

    (2)对空调开启时开启窗户的行为进行分析时,开窗的病房比例、通风面积、室内外温差均取值一定。当开窗病房比例为11%、通风面积取0.64m2、室内外温差取5℃时,节约空调能耗比例为3.34%,此数据为综合各种开窗情况的平均情况。当开窗的病房比例从8%变化到10%时,节约空调能耗比例从2.41%变化到3.01%。当通风面积从50%变化到80%时,节约空调能耗比例从2.36%变化到2.68%。当室内外温差为3℃时,节约空调能耗比例为2.97%。可知开窗的病房比例和通风面积对能耗比例有一定影响,室内外温差影响较小。

    4AcrelEMS-MED医院能源管理平台

    4.1平台概述

    AcrelEMS-MED医院能源管理平台充分结合《医疗建筑电气设计规范》《绿色医院建筑评价标准》、《医院建筑能耗监管系统建设技术导则》等行业规范、根据医院用户需求以及能源管理部门要求,采集分析能源、能耗、能效数据,监测以电能质量、智慧用电相关指标以及其他用能指标,并与国家能源政策与用能模式改革结合。能够辅助医院后勤管理人员进行能源供应系统及设备的运行管理工作,帮助医院管理层实时掌握医院的能耗情况,为医院能源信息化建设和节能管理提供了良好的技术平台。

    5平台组成

    安科瑞医院能源管理系统建立基于云平台的“监、控、维"一体化的能源管理系统,从数据采集、设备控制、数据分析、异常预警、运维派单、系统架构和综合数据服务等方面的设计,帮助医院后勤管理部门全面了解医院能源运行情况,关注消防和电气安全,及时预警异常情况,提高运维效率。它集成了10KV/O.4KV变电站电力监控系统、变电所运维云平台,配电房综合监控系统,能耗管理系统,智能照明控制系统,智慧消防平台,电气火灾监控系统,消防设备电源监控系统,防火门监控系统,消防应急照明和疏散指示系统,充电桩管理系统,电能质量治理解决方案,医疗隔离电源解决方案。

    6平台拓扑图

    7平台子系统

    7.1医院电力监控解决方案

    电力监控系统实现对变压器、柴油发电机、断路器以及其它重要设备进行监视、测量、记录、报警等功能,并与保护设备和远方控制中心及其他设备通信,实时掌握供电系统运行状况和可能存在的隐患,快速排除故障,提高医院供电可靠性。

    电力监控系统主要针对开闭所和10/0.4kV变电所,对高压回路配置微机保护装置及多功能仪表进行保护和监控,对0.4kV出线配置多功能计量仪表,用于测控出线回路电气参数和用能情况。同时对医院重要设备如柴油发电机、无功补偿装置、有源滤波装置、UPS、隔离电源系统状态进行监测。


    7.2医院变电所运维云平台解决方案

    AcrelCloud-1000电力运维云平台采用多功能电力传感器、无线通信、边缘计算网关及大数据分析技术,通过智能网关采集现场数据并存储在本地,再定时向云平台推送数据。平台采集的数据包括变电所回路电气参数和变压器温度、环境温湿度、浸水、烟雾、视频、门禁等信息,有异常发生10S内通过短信和APP发出告警信号。平台通过手机APP下发运维任务到人员手机上,并通过GPS跟踪运维执行过程进行闭环,提高运维效率,即时发现运行缺陷并做消缺处理。

    7.3医院配电房综合监控系统解决方案

    Acrel-2000E配电室综合监控系统,可实现开关柜运行监控、高压开关柜带电显示、母线及电缆测温监测、环境温湿度监测、有害气体监测、安防监控,可对灯光、风机、除湿机、空调控制等设备进行联动控制。实现动力环境各数据的检测与设备控制,优化动力环境,避免运行环境的失控导致配电设备运行故障,保证维护人员安全,延长设备使用寿命,实现配电动力环境的分布式远程管理。

    7.4医院能耗管理系统解决方案

    对建筑各类耗能设备能耗数据进行实时测量,对采集数据进行统计和分析。能够合理的确定各科室建筑能耗经济指标及绩效考核指标,发现能源使用规律和能源浪费情况,提高人员主动节能的意识。

    (1)搭建医院智慧能源管理系统的基本框架,对各个用能环节进行实时监测;

    (2)排碳数据化:通过系统可实现建筑单位内人均能耗分析(包括水、电、能量),实现低

    碳办公数据化;

    (3)区域能效比:实现建筑单位内区域能耗对比,方便能耗考核;

    (4)同期能效比:实现同年、同期、同一区域能耗对比,方便节能数据分析;

    (5)能耗评估管理:按照能源消耗定额标准约束值、标准值、引导值进行分析单位面积能耗和人均能耗指标;

    (6)能耗竞争排名:各个科室能耗对比,实现能耗排名,增强全院工作人员的节能意识;

    (7)对能耗的使用数据进行综合的分析、统计、打印和查询等功能,并根据能耗监测管理系统的需要可选择不同样式报表的打印。为能耗运营管理部门提供可靠的依据;

    (8)能耗数据采集,随时查询,并根据采集数据进行统计分析,监测异常能源用量,对能源智能仪表故障进行报警,提高系统信息化、自动化水平。

    7.5医院智能照明控制系统解决方案

    医院人流比较密集,科室较多,照明用电在医院电能消耗中约占到15%左右。所以合理使用照明控制系统,在提升医生和患者的体验情况下大程度使用自然光照明,通过感应控制做到人来灯亮,人走灯灭或保持地强度照明,尽量解决照明用电。

    ASL1000智能照明控制系统可以实现场景控制、时间控制、区域控制、光照度感应控制以及红外感应控制等多种控制方式,能有效避免公共区域的照明浪费,还可以帮助医院管理照明。

    系统在配电箱内的模块主要有总线电源、开关驱动器、IP网关、耦合器、干接点输入模块等。这些模块使用35mm标准导轨安装。

    安装在控制现场的模块主要有光照度传感器、红外传感器和智能面板。有人经过可以设定红外感应控制亮灯,人离开后在设定的时间内熄灯,智能面板等手动控制设备,可实现自动控制、现场控制和值班室远程控制相结合。

    7.6医院智慧消防平台解决方案

    智慧消防云平台基于物联网、大数据、云计算等现代信息技术,将分散的火灾自动报警设备、电气火灾监控设备、智慧烟感探测器、智慧消防用水等设备连接形成网络,并对这些设备的状态进行智能化感知、识别、定位,实时动态采集消防信息,通过云平台进行数据分析、挖掘和趋势分析,帮助实现科学预警火灾、网格化管理、落实多元责任监管等目标。实现了无人化值守智慧消防,实现智慧消防“自动化"、“智能化"、“系统化"需求。从火灾预防,到火情报警,再到控制联动,在统一的系统大平台内运行,用户、安保人员、监管单位都能够通过平台直观地看到每一栋建筑物中各类消防设备和传感器的运行状况,并能够在出现细节隐患、发生火情等紧急和非紧急情况下,在几秒时间内,相关报警和事件信息通过手机短信、语音电话、邮件提醒和APP推送等手段,就迅速能够迅速通知到达相关人员。

    7.7医院电气火灾监控系统解决方案

    电气火灾监控系统作为火灾自动报警系统的预警子系统,由电气火灾监控主机、电气火灾监控单元、剩余电流式电气火灾探测器以及测温式电气火灾探测器组成,通过现场总线构成一套完整的预防电气火灾的监控系统,数据可集成至企业消控室监控系统。

    医院电气火灾监控系统以建筑为单位设置,采集数据后上传至值班室监控主机,实现对建筑电气安全预警。现场设置的传感器监测配电系统回路的漏电电流和线缆温度,异常时实时发出报警信号,重点关注门诊楼、住院楼、医技楼等区域漏电或者电缆发热等问题。

    7.8医院消防设备电源监控系统解决方案

    医院消防安全非常重要,消防设备比较多,消防设备电源监控系统主要功能就是用于监测消防设备的工作电源是否正常,保障在发生火灾时消防设备可以正常投入使用。

    消防设备电源监控监控系统采用消防二总线,以建筑为单位设置区域分机采集消防设备电源状态,区域分机通过二总线接收多台传感器的电压、电流信息和开关状态信息,以此实现对消防设备电源工作状态的实时监视。

    7.9医院防火门监控系统解决方案

    医院防火门数量比较多,由于部分区域经常有人走动,常开常闭防火门数量都不少,防火门监控系统的作用就是监测防火门开闭状态,在发生火灾后自动关闭常开防火门,防止烟雾扩散。防火门监控系统采用消防二总线将具有通信功能的监控模块相互连接起来,用于监测和控制防火门状态,当防火门发生异常位置信号时,防火门监控器能发出故障报警信号,指示故障报警部位并保存故障报警信息。发生火灾时,关闭事故区域所有常开防火门,防止烟雾向安全区域扩散。

    7.10医院消防应急照明和疏散指示系统解决方案

    医院人员流动性强,密度大,消防比较复杂,一旦发生火灾,疏散指示系统非常重要。消防应急照明和指示系统可以和火灾报警系统联动,提供应急照明和疏散路径指示,指引人群快速找到疏散出口,并可以一键选择疏散应急预案,提升人员逃生概率。

    8fa9af8e0ab0819227b8933532ed05fe_e0973d65f8dd4392af08944cb671ee0d.png

    7.11医院有源谐波治理系统解决方案

    都是谐波源,比如X光机、CT机等都会产生大量谐波,谐波使电能的生产、传输和利用的效率降低,使电气设备过热、产生振动和噪声,并使绝缘老化,使用寿命缩短,甚至发生故障或烧毁。谐波可引起电力系统局部并联谐振或串联谐振,使谐波含量放大,造成电容器等设备烧毁。谐波还会引起继电保护和自动装置误动作,使电能计量出现混乱。对于医院的精密化验设备可能会产生干扰。

    为了消除配电系统谐波对医院设备的影响,方案配置AnSinI有源滤波器,滤除电网2~31次谐波干扰。

    AnSinI系列有源电力滤波装置,以并联方式接入电网,通过实时检测负载的谐波和无功分量,采用PWM变流技术,从变流器中产生一个和当前谐波分量和无功分量对应的反向分量并实时注入电力系统,从而实现谐波治理和无功补偿。

    7.12医院充电桩系统解决方案

    医院停车场有电动汽车和电动自行车,均需要提供充电桩。充电桩管理系统通过物联网技术对接入系统的充电桩站点和各个充电桩进行不间断地数据采集和监控,解决物业、用电管理部门的充电桩使用、监控问题。电动自行车充电可采用投币、扫码充电方式,电动汽车支持IC卡和扫码充电方式。远程充电桩系统可实时远程完成启动充电、强制停止、单价设置等控制指令,用户可通过APP、微信、支付宝小程序扫描二维码,进行支付后,系统发起充电请求,控制二维码对应的充电桩完成电动汽车的充电过程。同时对各类故障如充电机过温保护、充电机输入输出过压、欠压、绝缘检测故障等一系列故障进行预警;能够远程控制,提供财务报表和数据分析等功能。

    7.13医院医疗隔离电源解决方案

    《民用建筑电气设计规范》14.7.6.3条明确规定:在电源突然中断后,重大医疗危险的场所,应采用电力系统不接地(IT系统)的供电方式。同时《医院洁净手术部建筑技术规范》GB50333-2002中规定:2类医疗场所在维持患者生命,外科手术和其他位于患者周围的电气装置均应采用IT系统。如:抢救室(门诊手术室)、手术室、心脏监控治疗室、导管介入室、血管照影检查室等。

    安科瑞电气股份有限公司的医疗隔离电源解决方案是针对医疗Ⅱ类场所的供电需求而开发设计的,能够很好的满足各类手术室和重症监护室对电源安全性和可靠性的要求,并符合国家相关标准。

    8相关平台部署硬件选型清单

    8.1电力监控系统硬件配置

    8.6智慧消防平台硬件配置方案

    应用场合

    型号

    功能

    智慧消防管理云平台

    Acrelcloud-6800

    基于物联网、大数据、云计算等现代信息技术,将分散的火灾自动报警设备、电气火灾监控设备、烟感探测器、消防水灭火系统、气体灭火系统、消火栓防火门系统、应急照明和疏散指示系统、消防设备电源监控系统等设备联网,对这些设备的状态进行动态感知、智能识别、主动预警、应急报警,通过云平台进行数据分析、挖掘和趋势分析,实现消防安全隐患识别、早期火灾预警、应急联动、落实多元责任监管,实现了无人化值守智慧消防,实现智慧消防“自动化"、“智能化"、“系统化"、切实保障人民的生命和财产安全。

    数据转换模块

    AF-GSM500-4G

    点阵液晶显示,4G远程通信,全网通7模,LORA通讯,断点续传,U盘拷贝,内嵌8GSD卡,事件记录

    电气火灾监控系统主机

    Acrel-6000/B

    该系统通过对剩余电流、过电流、过电压、温度和故障电弧等信号的采集与监视,实现对电气火灾的早期预防和报警,当必要时还能联动切除被检测到剩余电流、温度和故障电弧等超标的配电回路;

    消防设备电源监控系统主机

    AFPM100/B1

    系统具有可靠性、实时性并具有数字化、智能化、网络化、自动化和连续监控的特性,实时反应出被监控设备电源的状况,并集中显示,从而可有效避免火灾发生时,消防设备由于电源故障而无法正常工作的危急情况,大限度地保障消防联动系统的可靠性。

    防火门监控系统主机

    AFRD100/B

    系统通过对电动闭门器、电磁释放器、门磁开关等进行信号采集及控制

    应急照明与疏散指示系统主机

    A-C-A100

    系统配合火灾报警控制器使用时,在平时对系统内的设备进行实时的监视和控制,便于日常的管理和维护,保障系统的稳定运行。基于此保证在火灾发生时,能够准确改变消防应急标志灯具的指示方向,点亮消防应急照明灯,帮助建筑内的人群选择逃生疏散路线,指引安全的逃生方向,保障群众的人身安全,为各类用户担心的安全问题解决了后顾之忧。

    用户信息传输装置

    JK-GH2013G用户信息传输装置,带无线4G

    接入火灾报警系统数据

    智能消防水压表

    TK82G2M2T5,塑料圆壳(电信NB含卡三年流量),量程:0MPa~2MPa

    监测消防水管水压

    智能消防液位表

    TK83G80K5T5,线缆长8米(电信NB含卡三年流量)

    监测消防水箱水位

    可燃气体探测器

    JD-GD50-N(电信包含NB卡及三年流量费)

    监测天然气、CO、H2等

    光电感烟火灾探测报警器

    JD-SD51-N(电信包含NB卡及三年流量费)

    监测烟雾

    压力表

    MD-S272-NB,量程:0MPa~2MPa


    液位表

    MD-S272L-NB(默认3m),量程:0~100m(可选)


    消火栓

    MD-S271FC-DN100-NB量程:0~25MPa,防护等级:IP68


    摄像机

    CS-C6TC-32WFR,一个RT45,以太网口:Wi-Fi:萤石云私有协议,200w像素1/3,DC5V+10%


    热成像半球型网络摄像机

    DS-2TD1217-3/PA


    无线语音盒

    SH-780



    8.7电气火灾监控系统硬件配置方案

    8.8消防设备电源监控系统硬件配置方案


    8.888.9防火门监控系统硬件配置方案

    8.10消防应急照明和疏散指示系统硬件配置方案

    8.11有源谐波治理系统硬件配置方案

    名称

    型号

    功能

    有源谐波治理系统

    AnSin-□-MI型

    采用DSP+FPGA全数字控制方式,并联在系统中,兼补谐波和无功:可对2~51次谐波进行全补偿或特定次谐波进行补偿;具备完善的桥臂过流保护、直流过压保护、装置过温保护功能:基于谷歌Fliutter框架构建的遥信、遥控软件平台,具备远程服务与数据处理功能;支持IOS、安卓、PC多平台交互;具备超前和滞后的功率因数校正功能,可将三相不平衡负荷调整至平衡;具备动态过温降载功能,较大限度的保证滤波器的持续运行;具备智能风扇转速控制功能,根据负荷率和环境温度智能控制风扇转速,降低损耗;具备动态扩容功能。

    有源无功补偿系统

    AnCos-□-MI型

    采用DSP高速检测和运算的数字控制系统监控及显示系统;具备无功功率线性补偿、三相电流平衡治理和稳定电压的功能,并可滤除5、7、11、13次以内的谐波;具备远程通讯接口功能,并可通过PC机进行实时监控:基于谷歌Fliutter框架构建的遥信、遥控软件平台,具备远程服务与数据处理功能;支持IOS、安卓、PC多平台交互;具备数据可视化与策略定制化;具备自动检测运行功能;具备智能散热和无极调速的功能;具备动态扩容功能,支持插拔,方便更换;具备测量监视和定值设定功能;具备过压切除、过压闭锁、欠压切除、超温告警等保护功能。

    低压无功功率补偿装置

    ANSVC

    多种补偿形式:三相共补、三相分补、共补十分补三种形式,并使用串联电抗器保护电容器;控制器具有多回路循环或编码投切运行方式,能有效避免分组投切时个别电容投切过于频繁的问题;具有电力参数监测、采集和统计功能和标准的通信接口,可实现远程实时监测和计算机联网管理。

    谐波保护器

    ANHPD

    吸收3kHz〜10MHz频率各种能量的谐波干扰,消除高次谐波、高频噪声、脉冲尖峰、浪涌等干扰,挤正电压、电流波形,克服由于高频谐波污染引起的干扰,保障设备的安全运行。

    中銭安防保护器

    ANSNP

    DSP+FPGA控制方式,响应时间短,全数字控制算法;可滤除中性线中由3N次谐波或三相不平衡造成的过大电流;具有完善的桥臂过流保护、直流过压保护、装置过温保护功能:釆用4.3英寸屏慕彩色触摸屏以实现参数设置和控制;多机并联,达到较高的电流输出等级。

    混合动态谐波无功补偿

    系统

    AnCos-□/□-MI型

    线性输出,无功功率全容性-全感性输出的同时,可滤除特定次谐波;具备三相不平衡治理及稳压功能;补偿后系统功率因数>0.99;具有有源滤波功能,单模块有四种规格:30kvar无功十15A滤波,50kvar无功+25A滤波,75kvar无功+37.5A滤波,lOOkvar无功+50A滤波;模块化并联设计;基于谷歌Fliutter框架构建的遥信、遥控软件平台,具备运程服务与数据处理功能;支持IOS、安卓、PC多平台交互。

    混合动态无功补偿系统

    AnCos-□/Q□II型

    补偿方式灵活;无功补偿,谐波治理,解决三相不平衡问题;全模块设计;具有人性化的人机交互界面,实时显示系统的电能质量信息;基于谷歌Fliutter框架构建的遥信、遥控软件平台,具备远程服务与数据处理功能:支持IOS、安卓、PC多平台交互;采用7寸触摸屏,可以监控每一路TSCI作状态,实现参数设置和控制,保障功率因数可以达到0.99以上。

    混合动态消谐补偿系统

    AnCos-□/C□II型

    控制方式灵活,釆用先进的主电路拓扑和控制算法,快速响应;一机多能,既可补偿谐波,又可兼补无功;模块化设计;釆用可靠的电容电疣器组合,防止出现谐振;基于谷歌Fliutter框架构建的遥信、遥控软件平台,具备远程服务与数据处理功能;支持IOS、安卓、PC多平台交互;采用7英寸大屏慕彩色触摸屏以实现参数设置和控制,使用方便,易于操作和维护。


    8.12充电桩运营收费平台硬件配置方案

    9结论

    (1)医院能源消费以电能为主的能源消费中,空调能耗占能耗的大部分,其中病房(含办公室区域)占空调系统用能的35.8%,具有较大的节能潜力。

    (2)空调智慧监控系统通过管理病房内温度,使之维持在特定的温度区间,可以降低医院能耗12%;空调与窗户联动控制系统通过控制和减少人的开窗行为,可以降低医院能耗3%;屋顶光伏系统可以实现综合发电和楼顶遮阳,从而降低医院能耗7%。

    (3)通过建设智慧能源管理系统,预计实施后每年可以减少用电256万kW·h,相当于节省标准煤315t,减少CO2排放量873t,节能经济效℃和环境效℃显著。

    (4)室内设定温度对能耗的影响显著,空调温度设为25℃时节约空调能耗比例达到9.1%;开窗的病房比例和通风面积对能耗比例有一定影响,室内外温差的影响则较小。

    本文基于智慧医院的建设要求,主要探索了医院智慧管理在能源系统中的应用,分析的节能措施主要集中在智能楼宇与用户的互动。在接下来的研究中,需要进一步研究智能设备管理和智慧医疗在能源系统中的应用。

    参考文献

    [1]中国建筑节能协会.中国建筑能耗研究报告2020[J].建筑节能(中英文),2021,49(2):1-6.

    [2]路宾,曹勇,宋业辉,等.上海医院建筑用能状况分析与节能诊断[J].暖通空调,2009,39(4):61-64.

    [4]吴叠恩,陈建基,李盛佳,郭幸.基于智慧能源管理的医院节能措施分析.

    [5]安科瑞企业微电网设计与应用手册2022.05版.


产品中心 Products